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4.12 Density of states in a band  Consider the density of states function in Equation 4.10. By 
substituting the units for each variable and by using suitable interrelations between units, show that the 
units for g(E) is  J m. 

Solution 
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where we have used  Energy (J) = force (N)  distance (m) = mass (kg)  acceleration (m s)  
distance (m) =  (kg)(m s)(m) =  (kg)(m2 s). Thus, 
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4.13  Fermi-Dirac distribution  Consider the Fermi-Dirac function, ]1/[1)( /)(   kTEE FeEf . 

Define x = (E – EF)/kT and hence show that f(x) = df(x)/dx = ex/(ex + 1)2. (a) Plot f(x) vs. x and y = 
|f(x)/ f(0)| vs. x. (b) What are f and y at x =  2? What does the interval x = 4 about x = 0 represent? 
(c)  Show that the width x of the y vs. x curve between the y = 0.1 values is approximately 7.2. (d) 
What are your conclusions? 
 
Solution 
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  vthermal = 1.15  105 m/s 

Comparing the two values: 

  Ratio = vF/vthermal = 13.7 

 vF is about 14 times greater than vthermal. This is because vthermal assumes that electrons do not 
interact (more states than electrons) and obey Maxwell-Boltzmann statistics (Eav = 3/2kT). However, 
in a metal there are many conduction electrons (comparable to the total number of states). They 
interact with the metal ions and obey the Pauli exclusion principle, i.e. Fermi-Dirac statistics. They 
extend to higher energies to avoid each other and thereby fulfill the Pauli exclusion principle.  

b. The De Broglie wavelength is  = h/p where p = mevF  is the momentum of the electrons. 
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   = 4.63  1010 m or 4.63 Å 

The interplanar separation, d, is given as 2.09 Å. The diffraction condition is: 

   = 2dsin 
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Since this is greater than 1, and sin cannot be greater than 1, the electrons will not be diffracted. 

c. The drift mobility is related to the mean scattering time   by: 
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The mean free path, F, of electrons with speed, vF is: 

  F = vF = (1.57  106 m/s)(1.876  1014 s) = 2.95  108 m or 295 Å 

The mean free path of those electrons with effective speeds ve (close to mean speed) can be found as 
follows (EF exhibits very little change with temperature, therefore EF  EFO): 
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  e = ve = (1.215  106 m/s)(1.876  1014 s) = 2.28  108 m or 228 Å 

 

4.15 Free electron model, Fermi energy, and density of states  Na and Au both are valency I 
metals; that is, each atom donates one electron to the sea of conduction electrons. Calculate the Fermi 



Solutions to Principles of Electronic Materials and Devices: 4th Edition  (4 April 2017) Chapter 4 

 

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent 
of McGraw-Hill Education. 

 

energy (in eV) of each at 300 K and 0 K. Calculate the mean speed of all the conduction electrons and 
also the speed of electrons at EF for each metal. Calculate the density of states as states per eV cm−3 at 
the Fermi energy. 

Solution 

Since Na and Au are valency I metal, their electron concentrations, n are then the atomic 
concentrations multiplied by the group number, or: 
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      = 5.04×1019 J or 3.15 eV 

     

      = 8.863×1019 J or 5.54 eV 

At 300 K, 
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  EF(Au) = 5.54 eV 

Mean speed ve of conduction electrons (sometimes also called the effective speed) can be found from 
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    2/15/6 eFOe mEv  

  ve(Na) = (6EFO(Na)/5me)1/2 = ((6×3.15×1.6×1019 J)/(5×9.1×1031kg))1/2 

  ve(Na) = 8.15×105 ms1
 

and   ve(Au) = (6EFO(Au)/5me)1/2 = ((6×5.54×1.6×1019 J)/(5×9.1×1031kg))1/2 

  ve(Au) = 1.08×106 ms1 

Speed at EF is given by 
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  FOFe Em 2

2

1
v  

    2/1/2 eFOF mEv  

  vF(Na) = (2EF0(Na)/me)1/2 = ((2×3.15×1.6×1019 J)/(9.1×1031kg))1/2 

  vF(Na) = 1.05×106 ms1 

and  vF(Au) = (2EF0(Au)/me)1/2 = ((2×5.54×1.6×1019 J)/(9.1×1031kg))1/2 

  vF(Au) = 1.4×106 ms1
 

The density of states is given by 
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      = 1.6×1022 cm3 eV1 

Notice the similarity in the magnitudes of the density of states at the Fermi energy.   

 

4.16 Fermi energy and electron concentration  Consider the metals in Table 4.9 from groups I, II 
and III in the Periodic Table. Calculate the Fermi energies at absolute zero, and compare the values 
with the experimental values. What is your conclusion? 

Table 4.9 

 

Solution 

Since Cu is in group I, its valency is also 1. The electron concentration n is then the atomic 
concentration multiplied by the group number, or: 
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the Fermi energy at 0 K from Equation 4.22 is 
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  EFO = 7.04 eV 

Comparing with the experimental value: 

  8.31%difference % 


 %100
eV 5.6

eV 5.6eV 04.7
 

EFO can be calculated for Zn and Al in the same way (remember to take into account the different 
valencies). The values are summarized in the following table and it can be seen that calculated values 
are close to experimental values: 

 

Table 4Q16-1: Summarized values for Fermi energy at absolute zero temperature. 

Metal n (m3) ( 1028) EFO (eV) 

(calculated)

EF (eV) 

(experimental) 

% Difference 

Cu 8.490 7.04 6.5 8.3 
Zn 13.15 9.43 11.0 14.3 
Al 18.07 11.7 11.8 0.85 

 

Author's Note: The experimental values for the Fermi energy are only approximate (0.5 eV). For Al 
and Cu they have been extracted from soft x-ray emission spectra. For Zn, EF is from low temperature 
heat capacity measurements which generates an effective mass of 0.85 (see comment above on Table 
4.2), and the latter corresponds to EF = 11 eV.  Further information may be found in the following 
references (there are many others).  

Aluminum: W.M. Cady and D.H. Tomboulian, Phys. Rev., 59, 381, 1941; O. Aita and T. Sagawa, J. Phys. Soc. Jpn, 27, 164, 1969; J.C. 
Fuggle et al. Phys. Rev. B, 16, 75, 1977 

Copper: C.S. Fadley and D.A. Shirley, Journal of Research of the Notional Bureau of Standards - A. Physics and Chemistry, 74A (No. 
4), 543, 1970 (Figure 9, p552) 

Zinc: L.G. Parrat, Rev. Mod. Phys., 31, 616, 1959 as soft x-ray spectra which indicate a very rough value ~12 eV. (It is generally quite 
difficult to get a clean Zn surface of x-ray photoelectron spectroscopy.) Zn effective mass in Table 4.2 is used for generating an 
experimental EF in Table 4.9. It represents what EF should be from low-temperature heat capacity measurements. 

4.17 Temperature dependence of the Fermi energy 

a.   Given that the Fermi energy for Cu is 7.0 eV at absolute zero, calculate the EF at 300 K. What is 
the percentage change in EF and what is your conclusion? 
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b.   Given the Fermi energy for Cu at absolute zero, calculate the average energy and mean speed per 
conduction electron at absolute zero and 300 K, and comment. 

Solution 

a. The Fermi energy in eV at 0 K is given as 7.0 eV. The temperature dependence of EF is given by 
Equation 4.23. Remember that EFO is given in eV. 
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This is a very small change. The Fermi energy appears to be almost unaffected by temperature. 

b. The average energy per electron at 0 K is: 

  Eav(0 K) = 3/5 (EFO) = 4.2 eV 

The average energy at 300 K can be calculated from Equation 4.26: 
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  Eav(300 K) = 4.200236 eV 

This is a very small change. 

Assume that the mean speed will be close to the effective speed ve. Effective speed at absolute zero is 
denoted as veo, and is given by: 

  2
av 2

1
)K 0( eoemqE v  

  
  

 kg 109.109

eV 2.4J/eV 10602.1
2

)K 0(
2

31-

19
av







em

qE
eov  =  1,215,446 m/s 

At 300 K, the effective speed is ve: 
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Comparing the values: 
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  0.0028%difference % 


 %100
m/s 446,15,12

m/s 446,15,12m/s 80,154,12
 

The mean speed has increased by a negligible amount (0.003%) from 0 K to 300 K. 

Note: For thermal conduction, this tiny increase in the velocity is sufficient to transport energy from 
hot regions to cold regions.  This very small increase in the velocity also allows the electrons in many 
metals to diffuse from hot to cold regions giving rise to the Seebeck effect (with cold side negative). 

4.18  Fermi energy in Mg  The density and atomic mass of Mg are 1.74 g cm, and 24.31 g mol.  
Mg is in Group II in the Periodic Table. Calculate the Fermi energy of the electrons in Mg in eV to 
two decimal places.  When a Mg target is bombarded by electrons in a vacuum tube, soft x-ray are 
emitted whose spectra are shown in Table 4.10 in two rows at a time as photon energy hf (eV) and 
relative intensity I, where the maximum value of I has been assigned 100. Plot I vs. hf. Plot also I/f3 vs. 
hf, but with maximum I/f3 set to 100.  What is your conclusion? The reason for dividing I by f3 is that 
the emitted x-ray intensity is proportional to two factors: (a) the concentration of electrons nE at E that 
can fall down to the vacated L-shell, and (b) a quantum mechanical probability transition probability 
that depends on (hf)3.  
 
Table 4.10 Soft x-ray emission data from a magnesium target in an x-ray tube. Electron bombardment 
of the target knocks out L-shell electrons. Conduction electrons fall down in energy and fill the vacated 
L-states.    
hf(eV) 39.5  40  40.5  41  41.5  42  42.5  43  43.5  44 

I 0.57  0.70  1.12  2.45  3.99  6.26  11.0  18.1  27.1  37.4 

hf(eV) 44.5  45  45.5  46  46.5  47  47.5  48  48.4  48.8 
I 48.4  57.7  64.5  70.7  75.6  79.8  82.4  83.2  81.4  85.4 
hf(eV) 48.9  49  49.1  49.2  49.3  49.4  49.5  49.6  50  50.4 
I 90.9  96.4  100.0  83.5  43.5  15.3  7.48  4.02  1.16  0.43 
Data extracted from Table I in W.M. Cady and D.H. Tomboulian, Phys. Rev. 57, 381, 1941. 
 

Solution 

Since Mg is in group II, its valency is also 2. The electron concentration n is then the atomic 
concentration multiplied by the group number, or: 

       328
3

33123

at

m 10621.8
kg/mol 1031.24

kg/m 1074.1mol 10022.6
2)Valency( 











M

N
n A  

The Fermi energy at 0 K is 
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  EFO = 7.1 eV 
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Figure 4Q39-1 The log-log plot of thermal conductivity of a silicon single crystal vs dopant 
concentration,  vs. Nd. The best power law dependence is also shown. All data points at 10 K. Data 

from Table 4.18. 

We can use the arguments in 4Q38 that, at low temperatures, the phonon concentration is low so that 
impurities play an important role in scattering the phonons in a doped crystal.  depends on the mean 
free path  of the phonons. If we neglect all other phonon scattering processes, then the phonon mean 
free path would be determined by the dopant (impurity) concentration Nd. A phonon travels a distance 
 and then it is scattered by a dopant. If S is the cross sectional area of the dopant, then in the volume 
S there must be at least 1 dopant, that is SNd = 1. Thus, 

   
dSN

1
        (1)  

The experimental results in Figure 4Q39-1 approximately follow the above behavior. Recall that we 
neglected all other phonon scattering processes in Equation (1), so we should not expect an exact 
agreement. 

Author's Note: At sufficiently lower dopant concentrations,  loses its dependence on Nd as other 
scattering mechanisms (phonon-phono, crystal defects, surfaces) dominate. See D. Fortier, K. Suzuki. 
"Effect of P-donors on thermal phonon scattering in silicon", Journal de Physique, 1976, 37 (2), 143-
147.   

 

*4.40 Overlapping bands  Consider Cu and Ni with their density of states as schematically sketched 
in Figure 4.61. Both have overlapping 3d and 4s bands, but the 3d band is very narrow compared to 
the 4s band. In the case of Cu the band is full, whereas in Ni, it is only partially filled. 
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a.   In Cu, do the electrons in the 3d band contribute to electrical conduction? Explain. 

b.   In Ni, do electrons in both bands contribute to conduction? Explain. 

c.   Do electrons have the same effective mass in the two bands? Explain. 

d.   Can an electron in the 4s band with energy around EF become scattered into the 3d band as a 
result of a scattering process? Consider both metals. 

e.  Scattering of electrons from the 4s band to the 3d band and vice versa can be viewed as an 
additional scattering process. How would you expect the resistivity of Ni to compare with that of 
Cu, even though Ni has two valence electrons and nearly the same density as Cu? In which case 
would you expect a stronger temperature dependence for the resistivity? 

 
Figure 4.68 Density of states and electron filling in Cu and Ni 

Solution 

a. In Cu the 3d band is full, so the electrons in this band do not contribute to conduction. 

b. In Ni both the 3d and 4s bands are partially filled so electrons in both bands can gain energy from 
the field and move to higher energy levels. Thus both contribute to electrical conductivity. 

c. No, because the effective mass depends on how easily the electron can gain energy from the field 
and accelerate or move to higher energy levels. The energy distributions in the two bands are different.  
In the 4s band, the concentration of states is increasing with energy whereas in the 3d band, it is 
decreasing with energy. One would therefore expect different inertial resistances to acceleration, 
different effective mass and hence different drift mobility for electrons in these bands. 

d. Not in copper because the 3d band is full and cannot take electrons. In Ni the electrons can indeed 
be scattered from one band to the other, e.g. an electron in the 4s band can be scattered into the 3d 
band. Its mobility will then change. Electrons in the 3d band are very sluggish (low drift mobility) and 
contribute less to the conductivity. 

e. Ni should be more resistive because of the additional scattering mechanism from the 4s to the 3d 
band (Matthiessen's rule). This scattering is called s-d scattering. One may at first think that this s-d 
scattering de-emphasizes the importance of scattering from lattice vibrations and hence, overall, the 
resistivity should be less temperature dependent. In reality, electrons in Ni also get scattered by 
magnetic interactions with Ni ion magnetic moments (Nickel is ferromagnetic; Ch. 8 in the textbook) 
which has a stronger temperature dependence than   T. 

 

*4.41  Overlapping bands at EF and higher resistivity  Figure 4.61 shows the density of states 
for Cu (or Ag) and Ni (or Pd). The d-band in Cu is filled and only electrons at EF in the s band make a 
contribution to the conductivity. In Ni, on the other hand, there are electrons at EF both in the s and d 
bands. The d band is narrow compared with the s band, and the electron's effective mass in this d band 


